Regulation of the Bacillus subtilis GlcT antiterminator protein by components of the phosphotransferase system.
نویسندگان
چکیده
Bacillus subtilis utilizes glucose as the preferred source of carbon and energy. The sugar is transported into the cell by a specific permease of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) encoded by the ptsGHI operon. Expression of this operon is induced by glucose and requires the action of a positive transcription factor, the GlcT antiterminator protein. Glucose availability is sensed by glucose-specific enzyme II (EIIGlc), the product of ptsG. In the absence of inducer, the glucose permease negatively controls the activity of the antiterminator. The GlcT antiterminator has a modular structure. The isolated N-terminal part contains the RNA-binding protein and acts as a constitutively acting antiterminator. GlcT contains two PTS regulation domains (PRDs) at the C terminus. One (PRD-I) is the target of negative control exerted by EIIGlc. A conserved His residue (His-104 in GlcT) is involved in inactivation of GlcT in the absence of glucose. It was previously proposed that PRD-containing transcriptional antiterminators are phosphorylated and concomitantly inactivated in the absence of the substrate by their corresponding PTS permeases. The results obtained with B. subtilis glucose permease with site-specific mutations suggest, however, that the permease might modulate the phosphorylation reaction without being the phosphate donor.
منابع مشابه
Regulation of the glucose-specific phosphotransferase system (PTS) of Staphylococcus carnosus by the antiterminator protein GlcT.
The ptsG operon of Staphylococcus carnosus consists of two adjacent genes, glcA and glcB, encoding glucose- and glucoside-specific enzymes II, respectively, the sugar permeases of the phosphoenolpyruvate-dependent phosphotransferase system (PTS). The expression of the ptsG operon is glucose-inducible. Putative RAT (ribonucleic antiterminator) and terminator sequences localized in the promoter r...
متن کاملDeterminants of interaction specificity of the Bacillus subtilis GlcT antitermination protein: functionality and phosphorylation specificity depend on the arrangement of the regulatory domains.
The control of several catabolic operons in bacteria by transcription antitermination is mediated by RNA-binding proteins that consist of an RNA-binding domain and two reiterated phosphotransferase system regulation domains (PRDs). The Bacillus subtilis GlcT antitermination protein regulates the expression of the ptsG gene, encoding the glucose-specific enzyme II of the phosphotransferase syste...
متن کاملThe HPr protein of the phosphotransferase system links induction and catabolite repression of the Bacillus subtilis levanase operon.
The LevR protein is the activator of expression of the levanase operon of Bacillus subtilis. The promoter of this operon is recognized by RNA polymerase containing the sigma 54-like factor sigma L. One domain of the LevR protein is homologous to activators of the NtrC family, and another resembles antiterminator proteins of the BglG family. It has been proposed that the domain which is similar ...
متن کاملCharacterization of glucose-specific catabolite repression-resistant mutants of Bacillus subtilis: identification of a novel hexose:H+ symporter.
Insertional mutagenesis was conducted on Bacillus subtilis cells to screen for mutants resistant to catabolite repression. Three classes of mutants that were resistant to glucose-promoted but not mannitol-promoted catabolite repression were identified. Cloning and sequencing of the mutated genes revealed that the mutations occurred in the structural genes for (i) enzyme II of the phosphoenolpyr...
متن کاملMultiple phosphorylation of SacY, a Bacillus subtilis transcriptional antiterminator negatively controlled by the phosphotransferase system.
The Bacillus subtilis SacY transcriptional antiterminator is a regulator involved in sucrose-promoted induction of the sacB gene. SacY activity is negatively controlled by enzyme I and HPr, the general energy coupling proteins of the phosphoenolpyruvate:sugar phosphotransferase system (PTS), and by SacX, a membranal protein homologous to SacP, the B. subtilis sucrose-specific PTS-permease. Prev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 180 20 شماره
صفحات -
تاریخ انتشار 1998